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1. Introduction

A key object of study in mathematical physics is anti-de Sitter space, a class of man-
ifolds the provides important theoretical framework for several prominent fields. Most
useful when applied to the General Theory of Relativity, it acts as a solution to the set of
PDE’s known as the Einstein Field Equations which govern the universal geometry of all
spacetime. In particular, this gives a model which accommodates for the observed accel-
erating expansion famous in cosmology, predicting a slight negative curvature in regions
with little to no energy or mass present. It’s applications also extend to the AdS/CFT
correspondence, a major theoretical coupling between quantum gravity (the extension of
general relativity onto quantum scales) and quantum field theory (describing the interac-
tion of quantum mechanics to field theories such as electromagnetism).

Previous research [Tam19] has established a homeomorphism between the space of max-
imal surfaces (i.e. with zero mean curvature) in anti-de Sitter space and polynomial qua-
dratic differentials over C. In this project we studied the limiting behavior of this corre-
spondence by fixing a polynomial ppzq, and studying the surface associated with tppzqdz2

as t P R tends to infinity.
To accomplish this, we first created a program which takes as input a polynomial qua-

dratic differential over C and outputs the image of the corresponding maximal surface in
AdS3.

By studying examples generated by this program, we were able to formulate and prove
the following result:

Theorem A. Let q “ ppzqdz2 be a polynomial quadratic differential. There exists a non-
negative integer k so that the surface associated with tq converges to the surface associated
with wkdw2 as t P R tends to infinity.

2. Anti-de Sitter space

anti-de Sitter space is an n-dimensional manifold endowed with a Lorentzian structure.
In this paper, we will work with 3-dimensional anti-de Sitter space, denoted zAdS3, which
is topologically a torus. We can realize it in R4 as the set of points satisfying xx, xy “ ´1,
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where xx, yy :“ x1y1 ` x2y2 ´ x3y3 ´ x4y4. In the next section we will study maximal
surfaces in zAdS3, which are the surfaces with zero mean curvature.

Our goal will be to visualize a maximal surface from zAdS3 in 3 dimensions. Up to
transformation by an element of SOp2, 2q “ IsompAdS3q, every maximal surface in anti-
de Sitter space is equivalent to a maximal surface all of whose points have nonzero last
coordinate. We can project this into RP3, and finally visualize RP3 minus all points with
last coordinate 0 as R3.

We denote by AdS3 the projection of zAdS3 into RP3. If we consider only the projection
PpzAdS3ztx PzAdS3 : x4 “ 0uq, ignoring the slice of AdS3 with 4th coordinate equal to 0, we
can visualize this subset of AdS3 in R3 by scaling each point so that the 4th coordinate is
equal to 1; then we can parametrize the resulting surface using only the first 3 coordinates.
With such a parametrization, we visualize AdS3 in the following way.

Proposition 2.1. Consider the embedding of PpzAdS3ztx P zAdS3 : x4 “ 0uq in R3 found
by scaling each coordinate so that x4 “ 1, and subsequently projecting onto the first three
coordinates. Then the image of this embedding is tpx, y, zq P R3 : x2 ` y2 ´ z2 ă 1u.

Proof. We will first prove that the image of this projection is a subset of tpx, y, zq P R3 :

x2`y2´z2 ă 1u, and then we will prove the image contains tpx, y, zq P R3 : x2`y2´z2 ă 1u.
Let x “ rx1, x2, x3, x4s P PpzAdS3q be given so that x4 ‰ 0. Then

rx1, x2, x3, x4s “

„

x1

x4
,
x2

x4
,
x3

x4
, 1



.

in RP3, hence we can describe these points using the coordinates px1{x4, x2{x4, x3{x4q in
R3. Now, observe that

ˆ

x1

x4

˙2

`

ˆ

x2

x4

˙2

´

ˆ

x3

x4

˙2

´ 1 “
1

x2
4

px2
1 ` x

2
2 ´ x

2
3 ´ x

2
4q “

´1

x2
4

since xx, xy “ ´1. From this we can conclude

ˆ

x1

x4

˙2

`

ˆ

x2

x4

˙2

´

ˆ

x3

x4

˙2

“ 1´
1

x2
4

ă 1.

In the other direction, let px, y, zq P R3 be given so that x2 ` y2 ´ z2 ă 1. Then
x2 ` y2 ´ z2 ´ 1 “ ´w2 for some w2 P R`. Let x1 “ px{w, y{w, z{w, 1{wq. We can verify
that xx1, x1y “ ´1, so x1 P zAdS3. Then Ppx1q “ rx, y, z, 1s, which clearly maps to px, y, zq
under our projection, giving us a preimage of each px, y, zq. This concludes the proof. �

This means that, in visualizing surfaces and boundaries of maximal surfaces, our visu-
alizations will live inside the hyperboloid in Figure 1. In the next section, we explicitly
introduce maximal surfaces and study the correspondence between these surfaces and poly-
nomial quadratic differentials.
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Figure 1. Visualization of AdS3 in R3.

3. Maximal Surfaces in Anti-de Sitter Space

A maximal surface in anti-de Sitter space can be defined in an analogous fashion to a
minimal surface in R3. First, let f : Ω Ď CÑzAdS3 be a smooth map, and let S :“ fpΩq

be the corresponding surface. We may associate to every p P Ω its tangent plane TfppqS,
of which tfxppq, fyppqu is a basis. Then, the symmetric bilinear form x., .y restricts to a
bilinear form on TfppqS. If this bilinear form is positive definite, then TfppqS becomes an
inner product space with respect to this product. This leads us to the following definition:

Definition 3.1. Let f : Ω Ď C Ñ zAdS3 be a smooth function, and let S :“ fpΩq be
the corresponding surface. We say that S is space-like if for all p P Ω and all v P TfppqS,
xv, vy ě 0, with equality if and only if v “ 0.

Now, we can define the first and second fundamental forms of S, which are common tools
in studying the differential geometry of surfaces. We begin with the first fundamental form:

Definition 3.2 (First Fundamental Form). Let f : Ω Ď CÑzAdS3 be a smooth function,
and let S :“ fpΩq be the corresponding surface. The first fundamental form of S is the
map I : TfppqS ˆ TfppqS Ñ R so that Ipv, wq “ xv, wy. We can encode I as the following
matrix, using the basis tfxppq, fyppqu:

I “

ˆ

xfxppq, fxppqy xfxppq, fyppqy

xfxppq, fyppqy xfyppq, fyppqy

˙

.
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With this definition, we can check if S is space-like by checking if I is positive definite.
This allows us to make precise a notion of angle-preserving, as follows:

Definition 3.3. Let f : Ω Ď C Ñ zAdS3 be a smooth function, and let S :“ fpΩq be the
corresponding surface. We say that f is conformal if

I “

ˆ

2e2u 0

0 2e2u

˙

,

or, equivalently, if I “ 2e2updx2 ` dy2q “ 2e2|dz|2.

Clearly if f is conformal then I is positive definite, so S is space-like. When f is
conformal it will be convenient to normalize fx and fy by introducing the following vectors:

σ1 “
fx

eu
?

2
, σ2 “

fy

eu
?

2
.

Using these, we can also introduce a unit normal vector, denoted N , which is orthogonal
to each of σ1, σ2, and f , and also satisfies detpσ1, σ2, f,Nq “ 1. We know such an N exists
by choosing the orthogonal vector to these 3 that maintains positive orientation and using
Graham Schmidt to complete an orthonormal basis, and we specify the orientation via the
determinant condition.

We also introduce the second fundamental form here:

Definition 3.4 (Second Fundamental Form). Let B : TfppqS Ñ TfppqS denote the shape
operator, in other words Bpvq “ BN{Bv . We define the second fundamental form IIpv, wq “

IpBpvq, wq.

Using these fundamental forms, we can study the mean curvature of surfaces in zAdS3.
A maximal surface will be a space-like surface with zero mean curvature. For the purpose
of this paper, we define such surfaces as follows:

Definition 3.5 (Maximal Surface). We say that a space-like surface S ĎzAdS3 is maximal
when tracepIIq “ 0.

The basis tσ1, σ2, N, fu of R4 is orthogonal with respect to the inner product x., .y of
signature p2, 2q: we know σ1 and σ2 are orthogonal to each other since f is conformal. We
also know f is orthogonal to σ1 and σ2 since for any vector v P TfppqS,

xf, Bf{Bvy “
1

2

B

Bv
xf, fy “

1

2

B

Bv
p1q “ 0.

Finally, we know N is orthogonal to the other three vectors by construction. Thus,
tσ1, σ2, N, fu is an orthogonal basis of R4.

This lets us write any vector v in components as follows:

v “ xv, σ1yσ1 ` xv, σ2yσ2 ` xv, fyf ` xv,NyN,
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which allows us to evaluate the derivative of each basis element in terms of the other
elements and the requirement tracepIIq “ 0 fairly easily. Computation reveals the following:

pσ1qx “ 0σ1 ´ uyσ2 ` pe
´u{
?

2qII1,1N ` e
u
?

2f

pσ2qx “ uyσ1 ` 0σ2 ` pe
´u{
?

2qII1,2N ` 0f

Nx “ pe
´u{
?

2qII1,1σ1 ` pe
´u{
?

2qII1,2σ2 ` 0N ` 0f

fx “ eu
?

2σ1 ` 0σ2 ` 0N ` 0f

pσ1qy “ 0σ1 ` uxσ2 ` pe
´u{
?

2qII1,2N ` 0f

pσ2qy “ ´uxσ1 ` 0σ2 ´ pe
´u{
?

2qII1,1N ` e
u
?

2f

Ny “ pe
´u{
?

2qII1,2σ1 ´ pe
´u{
?

2qII1,1σ2 ` 0N ` 0f

fy “ 0σ1 ` e
u
?

2σ2 ` 0N ` 0f

We can condense these equations by introducing the matrix F , whose columns are
σ1, σ2, N, f in order. The above equations then reduce to the following two equations:

BxF “ F

¨

˚

˚

˝

0 uy pe´u{
?

2qII1,1 eu
?

2

´uy 0 pe´u{
?

2qII1,2 0

pe´u{
?

2qII1,1 pe´u{
?

2qII1,2 0 0

eu
?

2 0 0 0

˛

‹

‹

‚

(3.1)

ByF “ F

¨

˚

˚

˝

0 ´ux pe´u{
?

2qII1,2 0

ux 0 ´pe´u{
?

2qII1,1 eu
?

2

pe´u{
?

2qII1,2 ´pe´u{
?

2qII1,1 0 0

0 eu
?

2 0 0

˛

‹

‹

‚

(3.2)

In general, we have the following requirement for integrability of a system of ODEs:

Theorem 3.6. If there is a system of differential equations BxM “MP and ByM “MQ,
then there exists a solution to M if and only if Qx ´ Py “ QP ´ PQ.

Then, if S is a maximal surface, the above system is integrable. If we check the integra-
bility condition, we reduce a system of equations to get that

∆u “ ´
1

2
e2upII2

1,1 ` II
2
1,2q ` 2e2u

pII1,2qx “ pII1,1qy

p´II1,1qx “ pII1,2qy.
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The last two equations are the Cauchy-Riemann equations for a holomorphic function.
In other words, these last two equations are true if and only if there is a holomorphic
quadratic differential q “ hpzqdz2, where h : Ω Ñ C is holomorphic, so that

II “ 2Repqq “
ˆ

2Rephq ´2 Imphq

´2 Imphq ´2Rephq

˙

(3.3)

This allows us to also rewrite the first of those 3 equations in terms of q:

∆u “ ´
1

2
e2upII2

1,1 ` II
2
1,2q ` 2e2u

“ ´
1

2
e2up4Rephq2 ` 4 Imphq2q ` 2e2u

“ 2e2u ´ 2e2u|q|2. (3.4)

In conclusion, if S is a maximal surface, then equations (3.1), (3.2), (3.3), and (3.4) are
all satisfied. The converse is clearly also true, since if S is a space-like surface that obeys
(2.3), the trace of its second fundamental form must be 0.

We just found q given f , but we can also go backwards. If we are given a holomorphic
quadratic differential q, we can solve (3.4) for u, which determines the coefficients of the
matrices in (3.1) and (3.2). Then we can solve the system (3.1) and (3.2) for F ; the
last column of F gives us f , hence allowing us to uniquely determine S from q. This
demonstrates a bijection between the space of holomorphic quadratic differentials on C
and the space of maximal surfaces in zAdS3. As shown in [Tam19], this bijection is a
homeomorphism.

4. Convergence of Polynomial Maximal Surfaces

We consider a ray of holomorphic quadratic differentials qt and denote by ut the solution
of the PDE

∆ut “ 2e2ut ´ 2e´2ut |qt|
2,

where for each t the solution exists and is unique. We want to understand the behavior
of ut as t Ñ 8 in a neighborhood of the origin. Our ultimate goal is to find a limiting
surface (or, a limit equivalent up to transformations in SOp2, 2q) described by ut as t tends
to infinity.

To this end, our program produced numerous examples of maximal surfaces generated
by polynomials, and visually demonstrated how the surfaces evolve when t grows large.
For the most part, our program computed the boundary of the surfaces as opposed to
the surfaces themselves, since visualizing the entire surface tended to be computationally
expensive and each boundary corresponds to a unique surface.

The program itself had several key processes in producing such surfaces. For the purposes
of this paper, we chose to center our polynomials about the origin. As we will see in Lemma
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4.3, this meant transforming all inputed polynomials to be monic and centered would be
most beneficial. To continue however, it must find a solution to the PDE (3.4). It does
so by perturbing an initial input function, which we may derive as 1

4 log
`

|q|2
˘

through the
next two lemmas.

Lemma 4.1. Let v “ µ´ 1
4 log

`

|q|2
˘

where µ is the solution to our initial PDE. Then as
|z| Ñ `8, we have v Ñ 0.

Proof. We first note that because 1
4 log

`

|q|2
˘

is only defined outside of the zeroes of our
polynomial q, wherein we have T p1

4 log
`

|q|2
˘

q “ ∆p1
4 log

`

|q|2
˘

q. Noting also that this
function goes to ´8 as it approaches one of those zeroes, then by the Cheng-Yau Maximum
Principle, we have that 1

4 log
`

|q|2
˘

ď µ. By Lemma 3.2, we have then that

0 ď µ´
1

4
log

`

|q|2
˘

ď
1

4
log

`

|q|2 ` C
˘

´
1

4
log

`

|q|2
˘

“
1

4
log

ˆ

|q|2 ` C

|q|2

˙

Ñ 0 as |z| Ñ `8

as desired. �

Lemma 4.2. There exists a constant C ą 0 such that the function µ` “ 1
4 log

`

|q|2 ` C
˘

has the property that 0 ď ∆µ` ď 2e2µ`

´2e´2µ`

|q|2 “ T pµ`q. This inequality also implies
µ ď µ`.

Proof. We begin by finding ∆µ` and T pµ`q, which we can find by explicitly calculating
them:

∆µ` “ BzBz̄ log
`

|q|2 ` C
˘

“ Bz

ˆ

qq̄z̄
|q|2 ` C

˙

“
qz q̄z̄p|q|

2 ` Cq ´ qz q̄qq̄z̄
p|q|2 ` Cq2

“
|qz|

2C

p|q|2 ` Cq2
ą 0

as C ą 0 by construction and because both other terms are squares of real values. Next,
we find that

T pµ`q “ 2e2µ`

´ 2e´2µ`

|q|2 “ 2p|q|2 ` Cq
1
2 ´ 2p|q|2 ` Cq´

1
2 |q|2

“
2p|q|2 ` Cq ´ 2|q|2

p|q|2 ` Cq
1
2
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“
2C

p|q|2 ` Cq
1
2

.

We can now look for a C ą 0 such that ∆µ` ď T pµ`q which is equivalent to saying
|qz|

2C ď 2Cp|q|2`Cq
3
2 . This is clearly satisfied for large C, since the left hand side grows

at the order of C while the right hand side grows at the order of C5{2. To prove that
µ ď µ`, we simply invoke the Cheng-Yau Maximum Principle. �

Once it has obtained a solution through perturbation of this test function, it then goes
onto integrating along the solution to the ODE’s (3.1) and (3.2). By calculating the largest
eigenvalue to the resulting matrix, the associated eigenvector then gives the vertices of the
polygon representing the boundary of the surface, when we integrate the ODEs along the
lines through the origin with direction kπ

n`2 , for k “ 1, . . . , 2pn` 2q, where n is the degree
of the polynomial.

To calculate the actual surface, the process is similar, however requires integrating on a
fine grid to be accurately depicted, which as mentioned, is far more time expensive. These
are then mapped onto the 3D representation of anti-de Sitter space described in Section 2.

(a) Boundary for ppzq “ 1 (b) Boundary for ppzq “ z (c) Boundary for ppzq “ z2

(d) Boundary for ppzq “ z3 (e) Boundary for ppzq “ z4 (f) Boundary for ppzq “ z5

Finally, we used our program to study the behavior of the polygons corresponding to the
rays tppzqdz2 as t P R goes to `8. We denote by St the corresponding maximal surfaces.
We discovered that the limiting configuration depends on the order of 0 P C as root of
ppzq, as the following examples show.
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(a) Boundary for ppzq “ z5 ` 1 (b) Boundary for ppzq “ 30000pz5 ` 1q

(a) Boundary for ppzq “ z5 ` z (b) Boundary for ppzq “ 30000pz5 ` zq

Lemma 4.3. Let qt “ tq0 with q0 “ pz
n ` an´2z

n´2 ` ... ` akz
kqdz2. There is a unique

α ą 0 such that in the coordinate w “ paktqαz we have qt “ q̂tpwqdw
2 Ñ wkdw2 as tÑ8.

Proof. We begin by choosing the coordinate w “ paktqα to write the quadratic differential
qt, giving us

qt “ t

˜

wn

tnαanαk
`

an´2w
n´2

tpn´2qαa
pn´2qα
k

` ...`
akw

k

tkαakαk

¸

dw2

a2α
k t

2α

“

˜

a
´pn`2qα
k wn

tpn`2qα´1
`
an´2w

n´2

anαk tnα´1
` ...`

a
´pk`2qα`1
k wk

tpk`2qα´1

¸

dw2

“ q̂tpwqdw
2
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Now, we notice that if we choose α to be 1
k`2 , then this eliminates the factor of t in the

coefficient of wk, but keeps all other coefficients inversely proportional to a positive power
of t. This means that as we scale t to infinity, all other coefficients go to 0, and thus we
are left with limxÑ`8 q̂tpwqdw

2 “ wkdw2, as desired. �

Theorem 4.4. In a neighborhood of 0 P C, the solutions ut converge as t Ñ `8 to the
unique solution of the equation

∆v “ 2e2v ´ 2e´2v|w|2k,

where k is the order of 0 P C as root of q0.

Proof. Let qt “ tq0 “ tpzn ` an´2z
n´2 ` ...` akz

kqdz2. Consider the ball

Bεp0q “ tz P C | |z| ă εu

We change coordinates and let w “ paktqαz as in Lemma 4.3. We rewrite the equation of
ut in this new coordinate. We set

I “ 2e2ut |dz|2 “ 2e2vt |dw|2 “ 2e2vt |ak|
2αt2α|dz|2 (4.1)

We take the logarithm and get

utpzq “ vtpwq `
1

2
log

`

|ak|
2αt2α

˘

(4.2)

The Laplacian in the new coordinate z can be written as

∆z “ 4
B

Bz

B

Bz̄
“ 4aαk t

α B

Bw
pākq

αpt̄qα
B

Bw̄
“ |ak|

2αt2α∆w. (4.3)

Note that
qtpzqdz

2 “ qtppaktq
´αwqpaktq

´2αdw2. (4.4)

Taking the modulus squared we get

|qtpzq|
2 “ |qtppaktq

´αwq|2|akt|
´4α “ |q̂tpwq|

2 (4.5)

Since ∆zut “ 2e2ut ´ 2e´2ut |qtpzq|
2, by (4.2), (4.3) we get

|ak|
2αt2α∆wvt “ 2e2vtp|ak|tq

2α ´ 2e´2vtp|ak|tq
´2α|qtppaktq

´αwq|2

By (4.5) we get
∆wvt “ 2e´2vt ´ 2e´2vt |q̂tpwq|

2 . (4.6)

By Lemma 4.3, q̂tpwqdw2 Ñ wkdw2 as tÑ8, hence, taking the limit in (4.6) we see that
vt converges to the solution of

∆v “ 2e2v ´ 2e´2v|w|2k

as desired. �
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By Theorem 4.4, the solutions to PDE vtpwq converge to vpwq as tÑ `8, so the induced
metrics It “ 2e2vt |dw|2 on St converge to I “ 2e2v|dw|2. Note that I is the induced metric
on the maximal surface S corresponding to the polynomial wkdw2, thus we expect that the
surfaces St converge to S and, consequently, the polygons on the boundary of St converge
to the polygon on the boundary of S. Indeed, if we change coordinates from z “ x` iy to
w “ η ` iζ in Equations (3.1) and (3.2), we see that the coefficients of the new matrices
P̂tpvtpwqq and Q̂tpvtpwqq such that

BηF̂t “ F̂tP̂t
BζF̂t “ F̂tQ̂t ,

where F̂t is the matrix defined analogously to F but using the coordinate w, converge to
the coefficients of the corresponding matrices defined for the maximal surface S as t goes
to `8. Thus the solution F̂t to the above ODEs converges to the frame of the maximal
surface S. Since the parameterizations of the surfaces are obtained by taking the last
column of these matrices, we deduce that St converges to S. This concludes the proof of
Theorem A.
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